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Background: Neuromelanin-sensitive magnetic resonance imaging (NM-MRI) is a validated measure of neuromelanin con-
centration in the substantia nigra–ventral tegmental area (SN–VTA) complex and is a proxy measure of dopaminergic func-
tion with potential as a noninvasive biomarker. The development of generalizable biomarkers requires large-scale samples
necessitating harmonization approaches to combine data collected across sites.
Purpose: To develop a method to harmonize NM-MRI across scanners and sites.
Study Type: Prospective.
Population: A total of 128 healthy subjects (18–73 years old; 45% female) from three sites and five MRI scanners.
Field Strength/Sequence: 3.0 T; NM-MRI two-dimensional gradient-recalled echo with magnetization-transfer pulse and
three-dimensional T1-weighted images.
Assessment: NM-MRI contrast (contrast-to-noise ratio [CNR]) maps were calculated and CNR values within the SN–VTA
(defined previously by manual tracing on a standardized NM-MRI template) were determined before harmonization (raw
CNR) and after ComBat harmonization (harmonized CNR). Scanner differences were assessed by calculating the classifica-
tion accuracy of a support vector machine (SVM). To assess the effect of harmonization on biological variability, support
vector regression (SVR) was used to predict age and the difference in goodness-of-fit (Δr) was calculated as the correlation
(between actual and predicted ages) for the harmonized CNR minus the correlation for the raw CNR.
Statistical Tests: Permutation tests were used to determine if SVM classification accuracy was above chance level and if
SVR Δr was significant. A P-value <0.05 was considered significant.
Results: In the raw CNR, SVM MRI scanner classification was above chance level (accuracy = 86.5%). In the harmonized
CNR, the accuracy of the SVM was at chance level (accuracy = 29.5%; P = 0.8542). There was no significant difference in
age prediction using the raw or harmonized CNR (Δr = �0.06; P = 0.7304).
Data Conclusion: ComBat harmonization removes differences in SN–VTA CNR across scanners while preserving biologi-
cally meaningful variability associated with age.
Level of Evidence: 2
Technical Efficacy: 1
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The search for biomarkers in neuropsychiatric disorders is a
major research agenda for the field and aligns with ongo-

ing precision medicine initiatives.1–4 Neuromelanin-sensitive
magnetic resonance imaging (NM-MRI) is a noninvasive
imaging technique that exploits the paramagnetic nature of

neuromelanin–iron complexes that form as the result of dopa-
mine metabolism in dopaminergic neurons of the midbrain.5–
7 NM-MRI has been validated as a marker of both dopami-
nergic function and dopaminergic neurodegeneration,8,9 indi-
cating potential for NM-MRI as a biomarker of the
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dopaminergic system. Furthermore, NM-MRI has several fea-
tures positioning it as an ideal biomarker candidate: Its nonin-
vasive nature and lack of ionizing radiation allowing for
repeated and longitudinal measurement, its ease of implemen-
tation, and its excellent test–retest reliability.10–12 The devel-
opment and characterization of biomarkers demands large
sample sizes to facilitate training and testing of statistical
models and to provide generalizability.1 Multisite studies facil-
itate obtaining such large sample sizes, but a method for com-
bining NM-MRI data from multiple sites has yet to be
developed.

Combining MRI data from multiple sites can intro-
duce unwanted, nonbiological variability into the data from
differences in hardware (eg, MRI scanner or head coil) or
software (eg, pulse sequence parameters).13–15 Including
covariates in analyses (i.e. statistically controlling for site)
does not sufficiently remove this variance and may perform
no better than models which ignore the confounds.16 Several
methods for MRI data harmonization16,17—that is, the
explicit removal of nonbiological variability (eg, hardware
and software related effects)—have been developed for neu-
roimaging data, but ComBat18 has emerged as a literature
standard. ComBat is an empirical Bayes method for harmo-
nizing both the mean and variance of a measure (eg, cortical
thickness) across batches and is particularly robust for small
sample sizes. This approach has been previously applied to
MRI measurement of cortical thickness,17,19 regional brain
volumes19,20 and cortical surface area,19 diffusion tensor
imaging,21,22 resting-state functional MRI,23,24and task-
based functional MRI.23

For a harmonization method to be useful, it must
maintain biologically meaningful variability (eg, differences
associated with diagnostic status). Because NM accumulates
in dopaminergic midbrain neurons over the lifespan,25–28

the NM-MRI signal should increase with age,29 thus provid-
ing biological variability that can be used to test a NM-MRI
harmonization approach in healthy subjects. A possible
added benefit of harmonization is the ability to improve
both the reproducibility and statistical power of downstream
analyses due to the removal of unwanted, nonbiological vari-
ability.17,19 This would be particularly beneficial for bio-
marker development where greater reproducibility and
statistical power could lead to more generalizable
biomarkers.

Thus, the aims of this study were to introduce a
method for harmonization of contrast-to-noise ratio (CNR)
maps calculated from NM-MRI data across multiple sites,
scanner vendors, and acquisition parameters, to assess the
ability of this method to harmonize the data while
maintaining biologically meaningful variability associated with
age, and its ability to improve both the reproducibility and
statistical power of the expected positive relationship between
the NM-MRI signal and age.25–29

Methods and Materials
Participants
All subjects provided written informed consent and institu-
tional review board approval was obtained from the three
institutes. Inclusion criteria were: age ≥ 18 and no MRI con-
traindications. Exclusion criteria were: history of neurological
or psychiatric diseases, pregnancy or nursing, and inability to
provide written consent. Two-dimensional gradient-recalled
echo with magnetization-transfer pulse (GRE-MT) NM-MRI
and anatomical three-dimensional (3D) T1-weighted (T1w)
images were collected from healthy subjects at three sites: Site
1 (3 T MR750 and 3 T Signa Premier, GE, Milwaukee,
WI), Site 2 (3 T Prisma, Siemens, Erlangen, Germany), and
Site 3 (3 T Ingenia and 3 T Ingenia Elition, Philips, Best,
The Netherlands). Due to hardware and/or software differ-
ences, the NM-MRI sequence parameters differed across
MRI scanners; a detailed description of sequence parameters
is given in Table 1. Sequence parameters for the 3D T1w
acquisitions are listed in Table 2.

Data Processing
NM-MRI data were preprocessed using a pipeline combining
statistical parametric mapping (SPM) and advanced normaliza-
tion tools (ANTs) previously shown to achieve excellent test–
retest reliability.12 This pipeline consisted of the following
steps: 1) if averages were acquired separately (i.e. offline averag-
ing), realignment to correct for motion using “SPM-Realign”
and averaging of the realigned images using “SPM-ImCalc”; 2)
brain extraction of the T1w image using “antsBrainExtraction.
sh”; 3) spatial normalization of the brain-extracted T1w image
to the MNI152NLin2009cAsym template space using
“antsRegistrationSyN.sh” (rigid + affine + deformable syn);
4) coregistration of the NM-MRI image to the T1w image
using “antsRegistrationSyN.sh” (rigid); 5) spatial normalization
of the NM-MRI images to template space by a single-step
transformation combining the transformations estimated in
steps 3 and 4 using “antsApplyTransforms”; and 6) spatial
smoothing of the spatially normalized NM-MRI image with a
1 mm full-width-at-half-maximum Gaussian kernel using
“SPM-Smooth.”

The preprocessed NM-MRI images in the template
space were then used to calculate NM-MRI CNR maps.
NM-MRI CNR at each voxel (CNRv) was calculated as the
percent signal difference in NM-MRI signal intensity at a
given voxel (Iv) from the signal intensity in the crus cerebri
(ICC)—a region of white matter known to have minimal NM
content—as:

CNRv ¼ I v�mode ICCð Þ½ �=mode ICCð Þf g�100

where mode(ICC) is calculated for each participant from a
kernel-smoothing-function fit to a histogram of all voxels in
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the crus cerebri (CC) mask following prior work.8 Masks of
both the CC and substantia nigra–ventral tegmental area
(SN–VTA) complex were taken from a previous study where
they were manually drawn on an NM-MRI template averaged
from 40 subjects8 and have been subsequently used in other
NM-MRI studies.12,30

CNR values of each voxel in the SN–VTA mask were
then harmonized using the ComBat harmonization model18,21

to remove nonbiological variability while maintaining biologi-
cal variability associated with age and sex. This model can be
written as:

yijv ¼ αvþXT
ij βvþ γivþδivεijv

where yijv is the CNR value of MRI scanner i (i� {1,…, 5}),
subject j (j� {1,…,N}; where N is the number of sub-
jects), and SN–VTA voxel v (v� {1,…, 1807}); αv is the
average CNR value over subjects for SN–VTA voxel v; X is
a design matrix for the covariates of interest (age and sex);
βv is a vector of regression coefficients corresponding to X
for SN–VTA voxel v; γiv and δiv are the additive and
multiplicative effects of MRI scanner i for SN–VTA voxel
v, respectively; and εijv are the error terms that are assumed

TABLE 1. NM-MRI Acquisition Parameters

Site 1 Site 2 Site 3

Parameter GE MR750
GE Signa
Premier Siemens Prisma

Philips
Ingenia Philips Elition

RO FOV (mm) 220 220 220 199 199

PE FOV (mm) 165 165 165 162 162

SS FOV (mm) 30 30 30 22 22

RO resolution (mm) 0.43 0.43 0.43 0.39 0.39

PE resolution (mm) 0.43 0.43 0.43 0.39 0.39

Slice thickness (mm) 3 1.5 3 2.5 2.5

Acquisition matrix
(RO � PE)

512 � 320 512 � 320 512 � 320 512 � 416 512 � 416

Number of slices 10 20 10 8 8

Slice gap (mm) 0 0 0 0.25 0.25

Slice orientation // AC-PC line // AC-PC line // AC-PC line ⊥ 4th ventricle ⊥ 4th ventricle

TE (msec) 3.9 4.8 3.9 3.9 3.9

TR (msec) 250 500 273 260 260

FA (�) 40 40 40 40 40

NEX 8 5 10 2 2

Averaging mode Online Online Offline Online Online

BW (Hz/Px) 122 122 315 75 75

MT offset (Hz) 1200 1200 1200 1200 1200

MT duration (msec) 10 10 10 15.6 15.6

Acquisition time
(minutes:seconds)

8:04 10:04 11:02 13:20 13:20

Receive coil 32-channel
head coil

48-channel
head coil

20-channel head–
neck coil

32-channel
head coil

32-channel
head coil

RO = read-out direction; FOV = field-of-view; PE = phase-encoding direction; SS = slice-selection direction; TE = echo time;
TR = repetition time; FA = flip angle; NEX = number of averages; BW = bandwidth; MT = magnetization transfer pulse; AC-PC =
anterior cingulate-posterior cingulate; // = parallel to; ⊥ = perpendicular to.
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to follow a normal distribution with mean 0 and
variance σ2v .

The ComBat-harmonized CNR values are defined as:

yComBatijv ¼
yijv� bαv�Xij

bβv� γ*iv

δ*iv
þ bαvþXij

bβv

where γ*iv and δ*iv are the empirical Bayes estimates of γiv and
δiv, respectively. Harmonization of the SN–VTA CNR was
performed using a publicly available MATLAB (MathWorks,
Natick, MA) package hosted at https://github.com/Jfortin1/
ComBatHarmonization/tree/master/Matlab.

Scanner Effects
To visualize potential differences in NM-MRI SN–VTA
CNR across scanners, we calculated the mean SN–VTA CNR
distribution for each scanner. Specifically, for each SN–VTA
voxel we calculated the mean over subjects (within a scanner)
and fit a kernel distribution to the histogram of all SN–VTA
voxels for visualization purposes. To quantify potential differ-
ences in SN–VTA CNR we calculated the within-subject
median CNR over voxels.

Classification of MRI Scanner
Following a previous application of ComBat to MRI data,17

we evaluated the performance of the proposed NM-MRI har-
monization method using support vector machines (SVM) to
classify the MRI scanner from the pattern of SN–VTA
CNR.23 Specifically, the input features for the SVM were
either the raw or harmonized CNR values of the 1807 voxels
within the SN–VTA mask. Mean classification accuracy was

calculated using 5-fold cross-validation (1000 repetitions) of a
one-vs.-one error correcting output code linear SVM
(MATLAB, fitcecoc with hyperparameter C optimized in an
inner 3-fold cross-validation loop)—this method was previ-
ously shown to improve performance over other multiclass
classifiers.31 To account for imbalanced sample sizes across
scanners, misclassification costs were set to be inversely pro-
portional to class frequencies for each one-vs.-one classifier.32

Multivariate Prediction of Age
To determine the ability of the proposed NM-MRI harmoni-
zation method to maintain biologically meaningful variability,
we used linear epsilon-insensitive support vector regressions
(SVR) to predict age from the voxelwise pattern of SN–VTA
CNR. Specifically, the input features for the SVR were the
raw or harmonized CNR values of the 1807 voxels within
the SN–VTA mask. Root-mean-square error (RMSE) and
Pearson correlation coefficient (r) between the actual and
predicted ages were calculated using 10-fold cross-validation
(1000 repetitions) linear SVR (MATLAB, fitrlinear with
hyperparameter C optimized in an inner 5-fold cross-
validation loop). Due to significant side effects observed in
the raw CNR, site was regressed out for each feature prior to
input in the SVR (for the raw CNR only).33

To evaluate differences in the ability to predict age
using SN–VTA CNR, the differences in RMSE (ΔRMSE)
and r (Δr) between the SVRs using the raw and harmonized
CNR was calculated for every combination of the 1000
repetitions.

To determine the reproducibility of the age-prediction
results, 1000 random subsets of subjects of varying sample

TABLE 2. Three-dimensional T1w Acquisition Parameters

Site 1 Site 2 Site 3

Parameter GE MR750 GE Signa Premier Siemens Prisma Philips Ingenia Philips Elition

RO FOV (mm) 240 240 166 284 284

PE FOV (mm) 240 240 240 284 284

SS FOV (mm) 176 176 166 170 170

RO resolution (mm) 0.8 0.8 0.8 0.9 0.9

PE resolution (mm) 0.8 0.8 0.8 0.9 0.9

Slice thickness (mm) 0.8 0.8 0.8 0.9 0.9

TE (msec) 3.1 3.4 564 4.1 4.1

TR (msec) 7.9 2500 3200 9.0 9.0

FA (�) 12 8 8 8 8

RO = read-out direction; FOV = field-of-view; PE = phase-encoding direction; SS = slice-selection direction; TE = echo time;
TR = repetition time; FA = flip angle.
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sizes (32, 64, and 96) were selected and SVR was used to pre-
dict age from the voxelwise pattern of SN–VTA CNR. In a
SVR, the weight of a predictor variable or feature (eg, CNR
in voxel v) on a predicted outcome variable (eg, age) is
reflected in the β-coefficient of each voxel such that the effect
of interest is the multivoxel (spatial) pattern of β-coefficients.
To investigate the reliability of the pattern of β-coefficients
for predicting age, the similarity of the pattern was evaluated
by calculating the spatial correlation (Pearson r) between SVR
β-coefficients from a given subset of subjects and every other
random subset with the same sample size.34

Standard Univariate Voxelwise Analysis of Age
Effects
To determine the statistical power of the age effect (signifi-
cant positive relationship with age), we performed a standard
voxelwise analysis via robust linear regressions (MATLAB,
fitlm with “RobustOpts,” “on”) that predicted CNR at every
voxel v within the SN–VTA as follows:

CNRv ¼ β0þβ1 � ageþ
Xnþ1

i¼2

βi �nuisance covariateþ ε

where n = 5 for the raw CNR (sex and four dummy variables
for the five MRI scanners as nuisance covariates) and n = 1
for the harmonized CNR (sex as a nuisance covariate). To
correct for multiple comparisons, we calculated the spatial
extent of an effect as the number of voxels, k, exhibiting a sig-
nificant correlation with age (voxel-level height threshold for
t test of regression coefficient β1 of P < 0.05, one-sided).

A leave-one-out analysis (i.e. 128 folds) was performed
to estimate the unbiased correlation between age and the
mean CNR in age-effect voxels (those voxels showing a signifi-
cant relationship with age), where the age-effect voxels used
to read out the mean CNR in a given subject were deter-
mined in a sample excluding that subject (n = 127).8,35

The variability in the location of age-effect voxels was
estimated using the results from the leave-one-out analysis.
The overlap in the spatial location of the age-effect voxels was
evaluated by calculating the Dice similarity coefficient
between the age-effect voxels determined from one of the
128 folds and those determined by the other 127 folds.

To further investigate the effect of harmonization on
statistical power, we compared the number of age-effect
voxels for each fold of the leave-one-out analysis between the
raw and harmonized CNR.

Left–Right Asymmetries
Left–right asymmetries (referred to here as laterality effect)
were investigated by comparing the difference in left and
right hemisphere SN–VTA CNR. For this we calculated the
difference in the median CNR over voxels between the left
hemisphere and the right hemisphere for each subject.

Statistical Analysis
One-way ANOVAs were used to test for significant differ-
ences in SN–VTA CNR across scanners by comparing the
means (over subjects within a scanner) of the median (over
voxels within a subject) CNR (five levels) and to test for a sig-
nificant difference in age across scanners (5 levels). Bonferroni
post-hoc tests were used to test for significant differences in
age for each of the 5 MRI scanners.

Permutation tests were used to determine if the mean
(over cross-validation repetitions) SVM classification accuracy
was significantly greater than expected by chance (one-tailed
test). This was done by comparing the mean classification
accuracy to a null distribution of classification accuracies gen-
erated by running the SVM 10,000 times with MRI scanner
labels randomly shuffled each time.

Permutation tests were used to determine if the mean
(over cross-validation repetitions) SVR performance (RMSE
and r) was significantly better than expected by chance (one-
tailed tests). This was done by comparing the mean perfor-
mance to a null distribution of age prediction performance
generated by running the SVR 10,000 times with age values
randomly shuffled each time. These same null distributions
were subsequently used to determine if the mean ΔRMSE
and Δr were greater or less than expected by chance (two-
tailed tests), but here the new null distributions were gener-
ated by taking the difference between every combination of
the previous null distributions for the raw and
harmonized CNR.

Permutation tests were used to determine if the number
of age-effect voxels in the standard univariate voxelwise ana-
lyses was greater than expected by chance (one-tailed tests).
This was done by comparing the number of age-effect voxels
(positive relationship with age determined by voxel-level
height threshold for t-test of regression coefficient P < 0.05,
one-sided) to a null distribution of the number for age-effect
voxels generated by running the standard univariate voxelwise
analysis 10,000 times with age values randomly shuffled each
time. These same null distributions were subsequently used
to determine if the number of age-effect voxels was signifi-
cantly different for the raw and harmonized CNR (two-tailed
test), but here the new null distributions were generated by
taking the difference between every combination of the previ-
ous null distributions for the raw and harmonized CNR.

Partial Pearson correlations (rpartial) were used to calcu-
late the unbiased correlation between age and the mean CNR
in age-effect voxels (from leave-one-out analysis) while con-
trolling for the nuisance covariates included in the robust lin-
ear regression (two-tailed tests). Because the correlations are
overlapping, the Meng, Rosenthal, and Rubin’s z-test was
used to compare the unbiased correlation coefficients between
the raw and harmonized CNR.36

A two-way analysis of variance (ANOVA) was used to
test for significant differences in the mean (over random
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subsamples within a sample size or over cross-validation repe-
titions for the full sample) spatial correlation of SVR
β-coefficients between sample sizes (four levels) and the raw
and harmonized CNR (two levels). Bonferroni post-hoc tests
were used to test for significant differences in the mean spatial
correlations from the raw and harmonized CNR for each of
the four sample sizes (n = 32, 64, 96, and 128).

Permutation tests were used to determine if there was a
significant difference in the median (over leave-one-out folds)
Dice coefficient for the age-effect voxels from the raw and
harmonized CNR (two-tailed test).

Multiple linear regression models were used to test for
significant laterality effects for each scanner with the laterality
effect of each subject as the dependent variable and each scan-
ner as categorical independent variables, and t tests were per-
formed on the regression coefficients for each scanner. One-
way ANOVAs were also used to test for significant differences
in the laterality effect across scanners (five levels).

For all tests, P < 0.05 was considered significant.

Results
Demographics
NM-MRI and anatomical T1w MRI data were collected on
128 healthy subjects from studies at Site 1, Site 2, and Site
3. At Site 1, 51 subjects were collected on a 3 T GE MR750
(mean � standard deviation age: 34.5 � 14.6 years; 22 female
and 29 male) and 29 subjects on a 3 T GE Signa Premier (age:
29.0 � 7.4 years; 15 female and 14 male); at Site 2, 24 subjects
were collected on a 3 T Siemens Prisma (age: 27.8 � 8.9 years;
12 female and 12 male); and at Site 3, 12 subjects were col-
lected on a 3 T Philips Ingenia (age: 23.9 � 4.1 years; four
female and eight male) and 12 subjects on a 3 T Philips
Ingenia Elition (hereafter referred to as Philips Elition; age:
24.3 � 2.1 years; five female and seven male). Age was signifi-
cantly different across scanners (F4,123 = 9.28), with this differ-
ence due to subjects acquired on the GE MR750 being
significantly older than those acquired on any of the other scan-
ners. No significant differences were observed for any compari-
sons within the other four scanners (all P > 0.6506).

Effect of NM-MRI Harmonization on Scanner
Effects
Substantial differences in the mean SN–VTA CNR distribu-
tions were visually apparent across the five MRI scanners
(Figure 1a) and were seemingly removed with ComBat harmo-
nization (Figure 1b). For the raw CNR values, the median over
SN–VTA voxels differed significantly between scanners
(F4,123 = 72.45; Figure 1c). For the harmonized CNR values,
no differences between scanners were present (F4,123 = 0.13,
P = 0.969; Figure 1d). A SVM multivoxel pattern analysis
(MVPA) using the raw CNR showed significant, above chance
level accuracy for MRI scanner classification (mean � standard
deviation classification accuracy = 86.5 � 1.8%; Figure 1e).

Using the harmonized CNR, the accuracy of the SVM classi-
fier was not above chance level (classification
accuracy = 29.5 � 3.0%, P = 0.8542; Figure 1e). A control
analysis to rule out that site effects were driven by subjects
scanned in the GE MR750 scanner being older showed that
excluding subjects above 35 years old (without which the dif-
ference in age across scanners was no longer significant:
F4,123 = 1.97, P = 0.1051) had little effect on site classifica-
tion, which remained above chance level for the raw CNR
(classification accuracy = 84.5 � 2.2%).

FIGURE 1: ComBat harmonization of neuromelanin-sensitive MRI
(NM-MRI) substantia nigra–ventral tegmental area (SN–VTA)
contrast-to-noise ratio (CNR). Kernel distributions of the mean
SN–VTA CNR from all voxels for each of the five MRI scanners
are shown for before (a) and after (b) harmonization. Boxplots
show the distribution of median SN–VTA CNR of the raw (c) and
the harmonized (d) CNR from subjects for each of the five MRI
scanners. The asterisk (*) denotes P < 0.05 for an ANOVA
comparing the median SN–VTA CNR across MRI scanners, and
results that were not significant are labeled “n.s.” (e) Boxplot
showing the mean performance for classification of MRI scanner
using 5-fold cross-validated linear support vector machine (SVM)
across 1000 random splits of the data. The null distributions
indicate empirical chance-level performance (5th–95th percentile
shown) determined by randomly shuffling each subject’s MRI
scanner label 10,000 times. The asterisk (*) denotes P < 0.05 for
the permutation test comparing the mean classification accuracy
over the 1000 random splits to the null distribution. For all
boxplots, the minimum, 25th percentile, 50th percentile
(median), 75th percentile, and maximum are shown.
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Effect of NM-MRI Harmonization on Biologically
Meaningful Variability
A SVR using the raw CNR could predict age significantly
above chance level (mean � standard deviation
RMSE = 125.91 � 3.83 months; r = 0.51 � 0.04; Figure 2).
Performance was also significantly above chance level using the
harmonized CNR (RMSE = 118.35 � 3.99 months,
r = 0.56 � 0.05; Figure 2). There was no significant difference
in age prediction between the SVRs using the raw or harmo-
nized CNR (ΔRMSE = 7.56 � 5.53; P = 0.1551;
Δr = �0.06 � 0.06; P = 0.7304).

Effect of NM-MRI Harmonization on
Statistical Power
In the raw CNR, the number of age-effect voxels in the SN–

VTA was within chance level (241 of 1807 voxels,
P = 0.072; Figure 3a). In the harmonized CNR, the number
of age-effect voxels was significantly above chance level
(324 of 1807 voxels; Figure 3b). The unbiased correlation
between SN–VTA CNR and age was significant for both the
raw CNR (rpartial = 0.19) and the harmonized CNR
(rpartial = 0.25); although the harmonized CNR correlation
was numerically greater than the raw CNR, this effect was
not statistically significant (z = 0.90, P = 0.37). We also
observed significantly fewer age-effect voxels in the raw CNR
(mean � standard deviation: 239.9 � 16.4 voxels) compared
to the harmonized CNR (323.9 � 12.5 voxels) (Figure 3c).

Effect of NM-MRI Harmonization on Reproducibility
For the spatial correlation of SVR β-coefficients, we found a
significant interaction between sample size (n = 32, 64, 96,
or 128) and CNR type (raw or harmonized) suggesting a

significant improvement in reproducibility for the harmo-
nized CNR (F3,7991992 = 9,288.75; Figure 4a). Bonferroni
post-hoc tests revealed increases in reproducibility for the har-
monized CNR that were significant for sample sizes of 64
(raw CNR: r = 0.53 � 0.08, harmonized CNR:
r = 0.55 � 0.07), 96 (raw CNR: r = 0.73 � 0.05, harmo-
nized CNR: r = 0.75 � 0.04), and 128 (raw CNR:
r = 0.99 � 0.01, harmonized CNR: r = 0.99 � 0.00) but
not significant for a sample size of 32 (raw CNR:
r = 0.34 � 0.11, harmonized CNR: r = 0.34 � 0.12;
P = 0.817). We also found significantly less overlap of age-
effect voxels for the raw CNR (median � interquartile range
Dice coefficient = 0.956 � 0.046) compared to the harmo-
nized CNR (Dice coefficient = 0.973 � 0.022) (Figure 4b).

Left–Right Asymmetries
In the raw CNR, significant laterality effects were found for
the GE MR750 (t123 = 3.74), GE Premier (t123 = �3.13),
and Siemens Prisma (t123 = �2.68), but not for the Philips
Ingenia (t123 = 0.41, P = 0.6836) or Philips Elition
(t123 = 1.22, P = 0.2234), with positive t-statistics indicating
greater CNR in the left hemisphere than the right hemi-
sphere. Additionally, significant differences in laterality effects
were observed across scanners (F4,123 = 8.15). In the harmo-
nized CNR, no significant laterality effects were found for
any scanner (GE MR750: t123 = �0.50, P = 0.6180; GE
Premier: t123 = �0.49, P = 0.6267; Siemens Prisma:
t123 = �0.84, P = 0.4012; Philips Ingenia: t123 = 0.23,
P = 0.8222; Philips Elition: t123 = 0.43, P = 0.6709) and
laterality effects were not significantly different across scanners
(F4,123 = 0.23, P = 0.9209).

Discussion
We have presented a method for harmonizing NM-MRI data
across sites and scanners to remove nonbiological variability
due to factors such as hardware and software differences. In
addition to effectively removing nonbiological variability, the
harmonization method maintained biologically relevant vari-
ability (here, age effects) while increasing both reproducibility
and statistical power.

As previously seen when using ComBat to harmonize
MRI measures of cortical thickness,17 we found that ComBat
successfully removes systematic biases associated with scanner
across multiple sites in which acquisition protocols were not
fully harmonized. Of note, we observed significant differences
in SN–VTA CNR values between two GE scanners (MR750
and Signa Premier) both at the same institute (Site 1), but
the MR750 data were acquired with a slice thickness of
3 mm while the Signa Premier data were acquired with a slice
thickness of 1.5 mm. Furthermore, data from Sites 1 and
2 were acquired with slices oriented parallel to the AC-PC
line while data from Site 3 were acquired with slices oriented
perpendicular to the floor of the fourth ventricle, suggesting

FIGURE 2: Effects of ComBat harmonization of neuromelanin-
sensitive MRI (NM-MRI) substantia nigra–ventral tegmental area
(SN–VTA) contrast-to-noise ratio (CNR) on biologically
meaningful variability. Boxplots showing the mean performance
for age prediction for two performance metrics: root-mean
square error (RMSE; a) and Pearson correlation coefficient (r; b).
The null distributions (gray regions) indicate empirical chance-
level performance (5th–95th percentile shown) determined by
randomly shuffling each subject’s age 10,000 times. Asterisks (*)
denote P < 0.05 and “n.s.” denotes non-significance for the
permutation test comparing the mean age prediction
performance over the 1000 random splits to the null
distribution. For all boxplots, the minimum, 25th percentile,
50th percentile (median), 75th percentile, and maximum are
shown.
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that the proposed NM-MRI harmonization method can
account for variability associated with slice orientation. The
ability of ComBat to harmonize these data suggests that the
“batch” effects can envelop all nonbiological sources of vari-
ability and alleviates the need to have perfectly matched
acquisition protocols, which may not be feasible due to soft-
ware and hardware limitations. It is possible that the benefits
from harmonization could be reduced in studies where acqui-
sition protocols are matched, but a previous study employing
ComBat harmonization on such a dataset showed it to remain
beneficial.23

Of almost equal importance to removing nonbiological
variability from NM-MRI data across sites, is maintaining
biologically meaningful variability. A harmonization approach
to facilitate multisite studies focused on biomarker

development must maintain the relevant biological variability.
In the case of an NM-MRI biomarker for diagnosis of
Parkinson’s disease, schizophrenia or any other neuropsychiat-
ric condition, this would typically be the effect of diagnosis.
Other biomarkers may instead focus on prediction of treat-
ment response or other clinically relevant outcomes. Here, we
provided a proof-of-concept demonstration that ComBat
maintains biologically meaningful variability in NM-MRI by
showing that it preserves variability associated with age
among healthy individuals. This is similar to previous Com-
Bat harmonization studies which successfully maintained bio-
logically meaningful variability in structural and diffusion
MRI.17,21 Future studies should verify that biologically mean-
ingful variability associated with diagnosis, treatment
response, symptom severity, and others, is maintained in

FIGURE 3: Effects of ComBat harmonization of neuromelanin-sensitive MRI (NM-MRI) substantia nigra–ventral tegmental area (SN–

VTA) contrast-to-noise ratio (CNR) on statistical power. Maps of SN-VTA voxels where the raw (a) and harmonized (b) NM-MRI CNR
were positively correlated with age (purple, thresholded at P < 0.05, one-sided, voxel level) overlaid on the average NM-MRI CNR
map from all subjects (NM-MRI template). Histograms showing the number of age-effect voxels over each of the 128 leave-one-out
folds for the raw and harmonized CNR (c). The asterisk (*) denotes P < 0.05 for the permutation test comparing the mean number of
age-effect voxels from the raw and harmonized CNR to the null distribution.
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clinical populations, although we would expect for this to be
the case based on our current data and previous studies using
ComBat.

We used SVM to successfully classify MRI scanner
from SN–VTA CNR in the raw CNR and SVR to success-
fully predict age from SN–VTA CNR in both the raw and
harmonized CNR. MVPA37 has been widely applied in other
neuroimaging modalities, such as functional MRI, and this
work has led to the successful development of biomarkers of
pain37 and depression subtypes38 among others. A potential
benefit of MVPA analyses would be the ability to detect topo-
graphical patterns of effects without circularity or the need
for repeated tests that are required for standard univariate
voxelwise analyses. Future work should investigate the useful-
ness of MVPA for the development of clinically useful NM-
MRI biomarkers.

Our finding of significantly fewer age-effect voxels in the
raw CNR compared to the harmonized CNR suggests that the
effective statistical power is increased in the harmonized CNR
when using standard analysis procedures. This result should be
interpreted with caution as it could be partially due to the dif-
ference in degrees of freedom in the regressions for the raw
and harmonized CNR, the latter of which does not include site
covariates. We use the term effective statistical power here,
since, although the degrees of freedom differ, these are the two
statistical tests that would be performed in actuality, and are
effectively on equal experimental footing.

In this study we harmonized the CNR within the SN–

VTA as opposed to the raw NM-MRI signal intensity in the

SN–VTA or the raw signal for the entire image. This is in
line with previous studies that harmonized the outcome mea-
sure (eg, regional brain volumes) instead of the raw MRI sig-
nal.17,19–24 We also performed harmonization on the raw
MRI signal (i.e. NM-MRI signal within the CC and the SN–

VTA separately prior to calculating CNR) but this approach
failed to remove the nonbiological variability (data not
shown).

Previous work using NM-MRI observed left–right
asymmetries in SN–VTA CNR, with healthy individuals
showing higher CNR in the left hemisphere.39 Here, we
investigated if these laterality effects were present in each of
the five MRI scanners and if the effects were consistent across
the scanners. We showed that in the raw CNR, laterality
effects were present in three out of the five MRI scanners;
more importantly, laterality effects across these three scanners
were inconsistent—one showed greater CNR in the left
hemisphere, while the other two showed greater CNR in the
right hemisphere—suggesting that left–right asymmetries are
not caused by biologically relevant mechanisms.

Limitations
Due to the inclusion of only subjects without neurological or
psychiatric disorders, the results of this study might not be
generalizable to certain patient populations. This is particu-
larly important for patient populations where differences in
NM-MRI signal are known to occur as in Parkinson’s dis-
ease.8,39 Theoretically, any systematic differences between a
patient population and controls should be maintained by
ComBat (as was observed here with age), but this needs to be
empirically demonstrated. Additionally, we did not present an
exhaustive evaluation or comparison of methods to harmonize
NM-MRI data but instead focused on a method previously
shown to perform well in other MRI applications. As such,
while ComBat achieved the goals of removing nonbiological
variability and maintaining biologically meaningful variability,
other harmonization methods may achieve better perfor-
mance. NM-MRI has also been applied to the locus coeruleus
(LC) to image the integrity of the noradrenergic system in
health and neuropsychiatric disease.40 Our study was limited
by data using a field-of-view that did not provide full cover-
age for the LC, and we were thus unable to harmonize LC
CNR. Given our current findings, we expect a similar harmo-
nization approach to be beneficial for LC NM-MRI, but a
study designed to test this is required. Lastly, we did not
acquire neurocognitive tests on out participants, which lim-
ited our ability to investigate differences in cognitive charac-
teristics across subsamples. If present, differences in SN–VTA
CNR across scanners caused by neurocognitive differences
would have been considered as nonbiological variability and
removed during the harmonization process. Future studies
should investigate the impact of cognitive characteristics and

FIGURE 4: Effects of ComBat harmonization of neuromelanin-
sensitive MRI (NM-MRI) substantia nigra–ventral tegmental area
(SN–VTA) contrast-to-noise ratio (CNR) on the reproducibility of
spatial patterns for predicting age. (a) A bar graph showing the
mean (�SD) reproducibility of β-coefficients of 10-fold cross-
validated linear SVR predicting age from 1000 random 10-fold
splits of the data (n = 128) or 1000 random subsets of subjects
(n = 32, 64, and 96). Asterisks (*) denote P < 0.05 for a two-way
ANOVA comparing the mean correlation of β-coefficients
between the raw and harmonized CNR for different sample
sizes. (b) Histogram showing the overlap of age-effect voxels
over each of the 128 leave-one-out folds for the raw and
harmonized CNR. The asterisk (*) denotes P < 0.05 for the
permutation test comparing the difference in median Dice
coefficient for the raw and harmonized CNR to the null
distribution.
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determine if the proposed harmonization approach maintains
biological variability associated with them.

Conclusion
We have presented a method using ComBat to harmonize
NM-MRI data that effectively removed nonbiological vari-
ability while maintaining biologically relevant variability
(associated with age) and produced modest improvements in
statistical power and reproducibility. Our results suggest that
harmonization is unlikely to be harmful or obscure the bio-
logical effects under investigation, at least as long as they are
identified a priori. This approach paves the way for combin-
ing NM-MRI data across sites and scanners, facilitating large-
scale multisite studies to develop NM-MRI-based biomarkers.
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